

1 Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1; 1

Technological Applied and Humanitarian Academic Journal
 https://riyadahpublishers.com/index.php/tahaJ

Research Article

Enhancing Performance Through Dynamic AES Round Keys and Adaptive

Data Shifting Techniques

Adel Mohammed Ali Al-Qashbari 1, Nabil Mohammed Ali Munassar 1, Mohammed Fadhl Abdullah1 , Ahmed

Saleh Khaled AL-Hurdi 1

1 IT Department, College of Engineering and Computing, University of Science and Technology, Aden, Yemen.

*Corresponding author: a.alqashbari@ust.cedu

Received: January 16, 2025 Accepted: February 15, 2025 Published: February 26, 2025

Copyright: © 2025 Al-Qashbari A, et al. This is an open-access article distributed under the terms of the creative

common attribution license, which permits unrestricted use, distribution and reproduction in any medium,

provided the original author and source are credited

Cite this article as: Adel Mohammed Ali Al-Qashbari, Nabil Mohammed Ali Munassar, Mohammed Fadhl

Abdullah, Ahmed Saleh Khaled AL-Hurdi. Enhancing Performance Through Dynamic AES Round Keys and

Adaptive Data Shifting Techniques. Technological Applied Humanitarian Academic Journal (TAHAJ).

2025;2(1):18-37.

Abstract:

The query discusses two encryption methods: standard AES (acting as the control group) and a new hybrid

encryption algorithm (the experimental group). Symmetric encryption, such as AES, uses a private key for both

encryption and decryption, applying multiple constants and iterations throughout the process. The study proposes

modifications to the AES algorithm by omitting certain steps—specifically, the substitution and mixcolumn

processes—while still utilizing a single key derived from a random primary key. This approach is accompanied

by dynamic data displacement to bolster security and improve execution time.

The research further indicates that traditional encryption methods struggle to find a balance between maintaining

strong security, operational efficiency, and resistance to various forms of attacks. In the experiments conducted,

the hybrid encryption algorithm demonstrated improved encryption and decryption times across different file

sizes, showcasing its competitive edge over standard AES while ensuring data security against brute force attack

testing.
Keywords: Performance, Dynamic AES , Data Shifting

INTRODUCTION

 Transformation companies transitioning from traditional to digital operations are facing

significant security challenges. Achieving a secure digital transformation necessitates the

continuous enhancement of cybersecurity capabilities. Cybersecurity refers to the strategies

employed by a country or organization to protect its products and information in cyberspace

(Hussain, Mohamed, & Razali, 2020). One key component of cybersecurity is cryptography,

which is defined as a method for safeguarding information and communications through the

use of codes.

Cryptography encompasses two primary types: symmetric cryptography and asymmetric

cryptography. Symmetric cryptography utilizes the same key or secret for both encrypting and

decrypting messages. In contrast, asymmetric cryptography employs a different key for

encryption than the one used for decryption. In this paper, the researchers provide an in-depth

examination of symmetric cryptography and asymmetric cryptography, highlighting various

Open Access

 2025, Vol.2 No. 1, page No: 18-37

https://riyadahpublishers.com/index.php/taha
mailto:a.alqashbari@ust.cedu

2 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

algorithms related to symmetric cryptography, such as DES, AES, and 3DES, as well as

algorithms related to asymmetric cryptography, including RSA, ElGamal, and ECC (Patil &

Bansode, 2020).

Additionally, hybrid cryptography emerges as a synthesis of the benefits of both asymmetric

and symmetric cryptography, significantly enhancing the overall security level. The proposed

hybrid method integrates dynamic shifting with a symmetric algorithm, specifically utilizing a

dynamic AES key.

 LITERATURE REVIEW

Verma & Dhiman, 2022 demonstrated implementation of improved cryptography algorithm in

this study used two blocks of 128 bits in order to test the proposed algorithm, RSA and AES

algorithms; the proposed algorithm achieved a lesser time than others.

Adeniyi, Falola, Maashi, Aljebreen, & Bharany, 2022 illustrated secure sensitive data sharing

using RSA and ElGamal cryptographic algorithms with hash functions in this research used

various text files: 10 kb, 15 kb, 20 kb, 25 kb, 30 kb, 35 kb, 40 kb, 50 kb, and 100 kb to examine

both asymmetric algorithms, RSA and ElGamal. The RSA algorithm gets lower time in

encryption; however, the ElGamal algorithm achieves a lesser time in decryption.

Ogundoyin, Ogunbiyi, Adebanji, & Okeyode, 2022 showed comparative analysis and

performance evaluation of cryptographic algorithms. In this thesis, I input different text files

into symmetric and asymmetric algorithms AES, DES, and RSA. The sizes of various files are

50b, 100b, 150b, 200b, and 500b. The RSA gets lower time in terms of encryption and

decryption.

Ahmed & Ahmed, 2022 applied comparative analysis of cryptographic algorithms in the

context of communication: A systematic review in this scientific paper was used to compare

asymmetric and symmetric algorithms through the input of different text files into algorithms.

After testing the algorithms, the ALGamal algorithm consumes less time in terms of encryption

and decryption.

Mohammad & Abdullah, 2022, demonstrated the enhancement process of AES, a lightweight

cryptography algorithm—AES for constrained devices. In this research, we examined the

symmetric algorithm AES, LWC-AES, by inputting five multiple text files into algorithms

481b, 1.4kb, 2.82kb, 5.64kb, and 45.1kb. The LWC-AES achieved a lesser time for data

encryption and decryption.

Kubba & Hoomod, 2020, illustrated developing a lightweight cryptographic algorithm based

on DNA computing. In this paper, the researcher develops a novel algorithm for encryption

and decryption data and compares it with another cryptography model through an input

message of 128 bits in algorithms; the novel mode gets lower time.

Marqas, Almufti, & Ihsan, 2020 showed comparing symmetric and asymmetric cryptography

in message encryption and decryption by using AES and RSA algorithms. This thesis used

different tasks in the symmetric and asymmetric algorithms. The tasks represented through the

input of various words were 100, 200, 300, and 400 words input into algorithms to determine

execution time for all. In the ultimate result, the AES was better than the RSA in terms of

encryption and decryption time.

3 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Maqsood, Ahmed, Ali, & Shah, 2017 applied cryptography: a comparative analysis for modern

techniques. In this study, the researcher compares asymmetric and symmetric algorithms such

as AES, DES, 3DES, RSA, and ALGamal using multiple text files of 32 kb, 126 kb, 200 kb,

246 kb, and 280 kb. Finally, the RSA algorithm achieved a lesser time to encrypt and decrypt

files.

Hossain, Hossain, Uddin, & Imtiaz, 2016, demonstrated performance analysis of different

cryptography algorithms in this study tested various algorithms through using different text

files: 329B, 778B, and 2048B. In the ultimate result, the AES got a lower time to process files.

AES was better than DES, RSA, and others.

Applying a Hybrid Encryption Algorithm in Cloud Computing. This study explores and

presents an advanced encryption strategy that combines three of the most powerful known

algorithms, which are Blowfish, Paillier, and AES, to increase the level of security and privacy

during uploading files to the cloud storage. This research aims to provide an overview of how

this process can be implemented using these nested hybrid algorithms and the potential benefits

of this multi-layered approach. 300b 10,35,1kb 25, 120,10kb 1100, 300, 50kb 3000, 6100

seconds.

METHODOLOGY

The methodology for this research follows a quantitative experimental approach and an applied

approach and includes the following steps:

 Design and Development

 This case demonstrates a flow chart for encryption and decryption as shown in Figure 1 and

Figure 2.

 Key Expansion for AES Algorithm

 This code demonstrates a key expansion process used in AES-like encryption, which expands

an initial 128-bit key into 9 subkeys, each of 128 bits (16 bytes). The key expansion is based

on the AES algorithm’s principles but adapted for a limited number of subkeys.

 RotWord

Rotates the word (shifts the bytes) to introduce further randomness into the key expansion.

S-Box (Substitution Box)

 A fixed table is used for byte substitution during encryption to provide confusion. The table

contains 256 hexadecimal values.

RCON (Round Constant)

 A constant is used during key expansion to modify the expanded key values, ensuring

cryptographic strength.

4 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Key Expansion

 Starting from the initial 128-bit key, it generates subkeys by expanding the key into columns.

Every 4th column is modified by applying the SubWord, RotWord, and XOR with the round

constant (RCON).

The key expansion continues until 36 columns are produced (equivalent to 9 subkeys for this

case), and these columns are flattened into a byte sequence.

Encryption Process Description

Figure 1 below illustrates the encryption process. The process begins with an XOR operation

between the plaintext and a dynamic AES key, producing an initial ciphertext. This ciphertext

then undergoes a series of rounds, each utilizing a unique AES key derived from an initial seed.

During each round, a dynamic bit shift is applied to the data, where the bits in each byte are

shifted to specific positions. This operation further obfuscates the data structure and enhances

security. The shift pattern changes with each round, adding a layer of complexity that makes

reverse engineering without the correct key sequence extremely challenging. This iterative

process of XOR and dynamic bit-shifting continues across multiple rounds until the final

ciphertext is generated, ensuring that each encryption step contributes to a fully obfuscated and

secure output.

Encryption Process

The encryption process operates on 16-byte data blocks. Here’s how the encryption works step by step:

Reading the Data

Python

Copy code

With open ("input_data.bin", "RB") as input_file:

 block = input_file.read(16)

 If not block:

 break

Purpose: Open the input file (input_data.bin) in binary read mode and read 16 bytes at a time.

Input_file.read (16) reads 16 bytes from the file. If the file ends, it returns an empty byte string, causing

the loop to exit.

Padding Short Blocks

Python

Copy code

if len (block) < 16:

 block = block.ljust (16, b'\x00')

Purpose: If the block is smaller than 16 bytes (which can happen at the end of a file), pad it with zeros

(b'\x00') to ensure it is exactly 16 bytes.

XOR Operation with Keys

Python

Copy code

xor_result = block

5 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

for i, key in enumerate (keys, 1):

 xor_result = bytes ([b ^ k for b, k in zip (xor_result, key)])

Purpose: This loop applies the XOR operation between the current xor_result (starting with the original

block) and each of the 9 keys.

Zip (xor_result, key) pairs each byte of the xor_result with the corresponding byte of the key.

b ^ k performs the XOR operation on each byte. XOR is a reversible operation, meaning it can be

undone during decryption.

Bitwise Shift

Python

Copy code

shift_amount = random.randint(1, 7)

xor_result = bytes([(b << shift_amount | b >> (8 - shift_amount)) & 0xFF for b in xor_result])

Purpose: After applying XOR with each key, the resulting bytes are shifted by a random amount

(between 1 and 7 bits).

(b << shift_amount | b >> (8 - shift_amount)): This performs a left bitwise shift on each byte. The

shifted-out bits are rotated back to the right.

The result is then masked with & 0xFF to ensure that each byte stays within the 8-bit range.

Storing Shift Values

Python

Copy code

shift_values.append(shift_amount)

Purpose: After each shift, the shift amount is stored in the shift_values list. These values are saved to

a separate file (shift_values.txt) so they can be used for decryption.

Writing Encrypted Data

Python

Copy code

encrypted_file.write(xor_result)

Purpose: The final encrypted block (after XOR and shifting) is written to the output file

(encrypted_data.bin).

6 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Ciphertext 10

Repetitions

This process to

Get K9, CT9

Plaintext

Ciphertext 1 Random Shifting

text

AES Key 0

Key 1 Ciphertext 2

Figure 1 Demonstrates Data Encryption Cases

Txt files

original data

Keys

txtfiles

Txt files for

dynamic shifiting

Txt file for save

encrypted data

7 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Decryption Process Description

Figure 2 above illustrates the decryption process, which reverses the encryption steps by

applying each AES dynamic key and dynamic data shift operation in the reverse order. Starting

with the final ciphertext, the process begins with a reverse data shift to restore the original bit

positions in each byte. This is followed by an XOR operation using the corresponding AES

dynamic key. This sequence is repeated for each round in reverse, utilizing the original

sequence of AES dynamic keys and dynamic shifts to accurately reconstruct the plaintext.

Consequently, the original data is successfully recovered.

Decryption Process

The decryption process reverses the operations performed during encryption. Here’s how the decryption

works:

 Reading Encrypted Data

Python

Copy code

With open("encrypted_data.bin", "RB") as encrypted_file:

 encrypted_block = encrypted_file.read(16)

 If not encrypted_block:

 Break

Purpose: Open the encrypted file (encrypted_data.bin) and read each 16-byte block for decryption.

Ciphertext 10

invers AES Key 9

Inverse Random Shifting

text

Ciphertext 9

Repetitions

This process to

Get inverse K1,

CT2

Ciphertext 1

invers Key

0

Plaintext

Figure 2 Demonstrates Decryption Data Cases

Read Txt file for

encrypted data

Read Keys

txt files

Read Txt files for

dynamic shifiting

Save decrypted

data in txt file

8 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Reading Shift Values

python

Copy code

shift_values = list(map(int, shift_file.readline().strip().split()))

Purpose: For each block, the corresponding shift values are read from the shift_values.txt file. These

values were saved during encryption and will be used to reverse the shift operation during decryption.

Reversing Bitwise Shift

Python

Copy code

decrypted_result = encrypted_block

for i, (key, shift_amount) in enumerate(zip(reversed(keys), reversed(shift_values)), 1):

 decrypted_result = bytes([(b >> shift_amount | b << (8 - shift_amount)) & 0xFF for b in

decrypted_result])

Purpose: The decryption starts by reversing the bitwise shift. For each key, the shift operation is

reversed:

b >> shift_amount | b << (8 - shift_amount): This is a right shift (opposite of the left shift in

encryption).

The shift amount used is the one that was saved during encryption.

Reversing XOR with Keys

Python

Copy code

decrypted_result = bytes([b ^ k for b, k in zip(decrypted_result, key)])

Purpose: After reversing the shift, the XOR operation is applied again using the same key (in reverse

order). XOR is its inverse, so applying it again will restore the original value of the block before

encryption.

Writing Decrypted Data

Python

Copy code

decrypted_file.write(decrypted_result)

Purpose: After decrypting the block, the result is written to the output file (decrypted_output.bin)

Plain text

AHMEDSALEHKHALEDbbfrom republic of yemen1111

Cipher text

 ط g؟€z‡UG²1ïéآI!o·d E»³#M‰ *Xزê×poCہفُ×

Decrypted text

AHMEDSALEHKHALEDbbfrom republic of yemen1111

Performance Evaluation

In this case, demonstrates the experimental setup and experimental result for the proposed algorithm.

9 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Experimental Setup

The algorithms are implemented using Python Experiments are performed on a Device nameLAPTOP-

CDTI2F87 Processor Intel(R) Core (TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz Installed RAM 8.00

GB (7.77 GB usable) System type 64-bit operating system, x64-based processor. We used different

sizes of text files in our experiments.

Experimental Result

Performance Evaluation through computational time of hybrid cryptography algorithm in terms of

encryption and decryption time.

RESULT

Discussion of Literature Review One and Proposed Technique

A single experiment was used to examine the model through one block of 128-bit input data into

algorithms. The purpose was to determine which algorithms achieved the lower time of encryption and

decryption.

Objectives

The objective is to inspect the effect of multiple text file sizes used on the algorithm’s performance

during encryption and decryption.

Detailed Description of the Results

Table 1 below demonstrates carefully used single text files 128bit, ultimately when comparing the

results of the (Verma & Dhiman, 2022) algorithm and the proposed algorithm achieved less time to

transfer plain text to cipher text and return cipher text to plaintext.

Table 1 Demonstrate Execution Second Time for Proposed Algorithm and Rohit Algorithm

Algorithms Execution time Data1(128 bit) Execution time Data2(128 bit)

Rohit &Jyoti Algorithm 7.3546 9.2943

Proposed Algorithm 0.001994s 0.001994s

Discuss Literature Review Two and the Proposed Algorithm

A single experiment was used to test the algorithm concluded text file 50KB plaintext involvement data

into algorithms. The purpose was to detect which algorithms achieved the lower time of encryption and

decryption.

Objectives

The goal is to examine the effect of different file sizes on the algorithm's performance in terms of

encryption and decryption time.

Detailed Description of the Results

Table 2 and Table 3 below demonstrate carefully used individual text files 50KB, finally when

comparing the output of the (Adeniyi et al., 2022) algorithm and the proposed algorithm get the least

time to transfer plain text to cipher text and return cipher text to plaintext.

10 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Table 2 illustrates the Encryption Time Millisecond for the Proposed Algorithm and the Adeniyi Algorithm.

S_no Size (Kb) RSAEncryption (ms) ALGamal Encryption (ms) Proposed Encryption(ms)

1 50 1094 13215 197.3

Table 3 Explain the Decryption Time Millisecond for the Proposed Algorithm and the Adeniyi Algorithm

S_no Size (Kb) RSA Decryption (ms) ALGamal Decryption(ms) Proposed Decryption(ms)

1 50 23986 4525 158.7

Discuss Literature Review Three and Proposed Algorithm

experiment was used to evaluate the algorithm through various text files 50, 100, 150, 200, and 500

Bytes input data into algorithms. The purpose was to recognize which algorithms achieved the lower

time of encryption and decryption.

Objectives

The objective is to investigate the impact of various text file sizes used by the algorithm during

execution time.

Detailed Description of the Results

Table 4 and Table 5 below vividly used multiple text files 50, 100, 150, 200, 500Byte, and observed

whenever increasing the size of text files the time increase also to encrypt and decrypt data for the

Ogundoyin algorithm however proposed algorithm increased time in decryption data, eventually when

equating the results of the (Ogundoyin et al., 2022) algorithm and the proposed algorithm achieved

lower time to transfer plain text to cipher text and return cipher text to plaintext.

Table 4 Demonstrates the Encryption Time Millisecond Between the Proposed Algorithm and the AES, DES, and RSA

Algorithm

Data size Byte AES DES Enc RSA Encryption Proposed encryption

50 40 38 36 0

100 50 46 47 0

150 60 53 61 0

200 62 56 65 0

500 65 60 69 0

Table 5 Demonstrates the Decryption Time Millisecond Between the Proposed Algorithm and the AES, DES, and RSA

Algorithm

Data size Byte AES DES Dcr RSA decryption Proposed decryption

50 37 35 34 0

100 46 43 44 0

150 57 50 58 0

200 60 52 62 7

500 61 58 65 7

Discussion of Literature Review Four and Proposed Algorithm

experiment was used to examine the algorithm through a set of text files1KB, 2KB, 4KB, 10KB, 20KB,

and 40KB input data into algorithms. The purpose was to identify which algorithms achieved the lower

time of encryption and decryption.

11 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Objectives

The objective is to explore the effect of text file sizes used on the algorithm’s performance during

encryption and decryption.

Detailed Description of the Results

Table 6 and Table 7 below show the carefully used several text files 1KB, 2KB, 4KB, 10KB, 20KB,

and 40KB, monitor whenever increasing the size of the files the time increase also to encrypt and

decrypt data, and ultimately when relating the results of the (Ahmed & Ahmed, 2022). The algorithm

and the proposed algorithm achieved less time to transfer plain text to cipher text and return cipher text

to plaintext

Table 6 Illustrates Encryption Time Second for Proposed Algorithm and Asymmetric Algorithm

Data size RSA encryption(s) ALGamal encryption(s) Proposed encryption (s)

1KB 0.150 0.120 0.007

2KB 0.292 0.250 0.007

4KB 0.620 0.515 0.016

10KB 1.781 1.452 0.033

20KB 4.355 3.522 0.079

40KB 17.322 11.805 0.157

Table 7 Illustrates Decryption Time Second for the Proposed Algorithm and Asymmetric Algorithm

Data size RSA decryption(s) ALGamal decryption(s) Proposed decryption (s)

1KB 0.128 0.120 0.007

2KB 0.262 0.245 0.007

4KB 0.570 0.509 0.016

10KB 1.671 1.441 0.054

20KB 4.254 3.509 0.058

40KB 22 11.711 0.116

Discussion of Literature Review Five and Proposed Algorithm

 experiment was used to examine through many texts files size 481B, 2KB, 5KB, and 45KB input data

into algorithms. The purpose was to determine which algorithms achieved the least time for encryption

and decryption.

Objectives

The objective is to inspect the effect of multiple text file sizes used on the algorithm’s performance

during encryption and decryption.

Detailed Description of the Results

Table 8 below illustrates carefully used various text files 481B, 2.82KB, 5.64KB, and 45.1KB,

observed whenever increasing the size of files the time increase also to encrypt and decrypt data,

ultimately when comparing the results of the (Mohammad & Abdullah, 2022). The algorithm and the

proposed algorithm obtained less time to transfer plain text to cipher text and return cipher text to

plaintext

12 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Table 8 Explain Encryption Time Millisecond for the Proposed Algorithm and Symmetric Algorithm

Data size LWC encrypt(ms) LWC decrypt(ms) Proposed encrypt(ms) Proposed decrypt(ms)

481byte 279 260 0 0

2.82KB 257 266 13 16

5.64KB 250 267 25 15

45.1KB 280 291 171 133

Discussion of Literature Review Six and Proposed Algorithm

The individual experiment was used to examine algorithms through one block of 128-bit input data into

algorithms. The purpose was to determine which algorithms achieved the lower time of encryption and

decryption.

Objectives

The objective is to inspect the effect of several text file sizes used on the algorithm’s performance during

encryption and decryption.

Detailed Description of the Results

Table 9 below demonstrates carefully used single text files 128bit, finally when comparing the results

of the (Kubba & Hoomod, 2020). The algorithm and the proposed algorithm achieved less time to

transfer plain text to cipher text and return cipher text to plaintext

Table 9 Demonstrates the Encryption Time Between the Kubba Algorithm and the Proposed Algorithm

Algorithms Encryption time message (128-bit)

Kubba & Hoomod Algorithm 0.0070

Proposed Algorithm 0.000996

Discussion of Literature Review Seven and Proposed Algorithm

 experiment was used to test many text file sizes 100, 200, 400, and 800 words through input data into

algorithms. The purpose was to govern which algorithms achieved the least time for encryption and

decryption.

Objectives

The objective is to explore the impact of multiple text file sizes used on the algorithm’s performance

during encryption and decryption.

Detailed Description of the Results

Table 10 and Table 11 below show the wise use of various text files 100, 200, 400, and 800 words,

detected whenever increasing the size of files the time increase also to encrypt and decrypt data,

ultimately when comparing the results of the (Marqas et al., 2020). The algorithm and the proposed

algorithm achieved less time to transfer plain text to cipher text and return cipher text to plaintext

13 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Table 10 illustrates the Encryption Time Between the Proposed Algorithm and AES, the RSA Algorithm

No of words AES encryption RSA encryption Proposed Algorithm encryption

100 0.412 1.843 0.0

200 1.596 3.536 0.007

400 3.222 7.045 0.008

800 4.037 14.167 0.021

Table 11 Explains the Decryption Time Between the Proposed Algorithm and the AES, and RSA

Algorithm

No of words AES decryption RSA decryption Proposed Algorithm decryption

100 0.408 1.774 0.008

200 1.163 3.453 0.008

400 2.330 7.106 0.16

800 4.616 13.877 0.025

Discussion of Literature Review Eight and Proposed Algorithm

experiment were used to examine algorithms through two text files 32KB, and 126KB input data into

algorithms. The purpose was to regulate which algorithms achieved the lower time of encryption and

decryption.

Objectives

The objective is to consider the effect of multiple text file sizes used on the algorithm’s performance

during encryption and decryption.

Detailed Description of the Results

Table 12 and Table 13 below explain carefully used text files 32KB, and 126KB pragmatic whenever

increasing the size of files the time increase also to encrypt and decrypt data, ultimately when comparing

the results of the (Maqsood et al., 2017). The algorithm and the proposed algorithm achieved less time

to transfer plain text to cipher text and return cipher text to plaintext.
Table 12 illustrates the Encryption Time Between the Proposed Algorithm and the AES, and RSA Algorithm

File size KB AES encryption RSA encryption Proposed Algorithm encryption

32 0.15s 0.13s 0.13s

126 0.46s 0.52s 0.46s

Table 13 illustrates the Decryption Time Between the Proposed Algorithm and the AES, and RSA Algorithm

File size KB AES decryption RSA decryption Proposed Algorithm decryption

32 0.15s 0.15s 0.09s

126 0.44s 0.43s 0.38s

Discussion of Literature Review Nine and Proposed Algorithm

experiment was used to inspect the algorithm through multiple text files329B, 778B, and 2048B input

data into algorithms. The purpose was to determine which algorithms achieved the lower time of

encryption and decryption.

14 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Objectives

The objective is to investigate the effect of multiple text file sizes used on the algorithm’s performance

during encryption and decryption.

Detailed Description of the Results

Table14 and Table 15 below vividly used multiple text files329B, 778B, and 2048B, observed whenever

increasing the size of files the time increase also to encrypt and decrypt data, ultimately when comparing

the results of the (Verma & Dhiman, 2022) algorithm and the proposed algorithm achieved lesser time

to transfer plain text to cipher text and return cipher text to plaintext.

Table 14 Explain the Encryption Time Between Proposed Algorithm and AES, RSA Algorithm

File size

Bytes

AES

encryption(ms)

RSA

encryption(ms)

Proposed Algorithm encryption(ms)

329 287 462 7

778 299 541 8

2048 300 488 14

Table 15 Shows the Decryption Time Between the Proposed Algorithm and the AES, and RSA Algorithm

Report on the Security of the Encryption Algorithm Against Brute Force Attack

This report evaluates the robustness of the implemented encryption algorithm against brute force attacks

as shown in Figure 3 below. The experiment used a Python-based brute force script to test whether the

encryption could be broken by systematically trying 1000 random keys of the same length as the

encryption key. The results demonstrate the strength of the encryption algorithm, as no valid key was

found to decrypt the file successfully.

Encryption algorithms are vital for securing sensitive data. To assess their strength, it is crucial to test

their resistance against common attack methods, such as brute force. This method systematically tries

possible keys to decrypt a file. In this experiment, we used a hybrid algorithm encryption scheme with

a key length of 16 bytes (128 bits) and tested its resistance to brute force attacks.

File size Bytes AES decryption(ms) RSA decryption(ms) Proposed decryption(ms)

329 293 499 0

778 304 450 5

2048 297 491 16

15 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

Test Security for Hybrid Algorithm

Encrypted File

The file (encrypted_data.bin) was encrypted using the hybrid algorithm in mode with a random 16-byte

key.

Brute Force Script

A Python script was developed to attempt decryption using 1000 random keys.

The script utilized the pycryptodome library for AES operations and implemented the unpadding

technique (unpad) to verify the integrity of the decrypted data.

Key Generation

Keys were generated randomly using the os.urandom function, ensuring high randomness and

uniqueness for each key.

Decryption Attempt

Each generated key was used to attempt decryption. If the decryption was successful, the plaintext

would have been logged alongside the key used.

Figure 3 Demonstrates Diagram brute force attack

Encryption Data File

Processing Using

Brute Force Attack

Predict Key to

Decrypted Data

Fail Decrypted

16 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

RESULTS

Decryption Attempts:

A total of 1000 keys were tested against the encrypted file.

No valid key was able to decrypt the file successfully.

Output Analysis

The script verified the integrity of decrypted data using the hybrid algorithm block size and padding

rules. All attempts failed to produce a valid plaintext, indicating that the correct key was not in terms

of the tested keys.

Table 16: Test Hybrid Algorithm by Brute Force Attack

Files Technique of attack Result

Encrypted file(encrypted_data.bin) Brute force attack Fail to get the key to decrypt the file

CONCLUSION OF TEST BRUTE FORCE ATTACK

The results confirm the robustness of the encryption algorithm against brute force attacks with the

current computational limits. The following key observations were made:

The large keyspace of AES-128 makes brute force attacks computationally infeasible without access to

significantly more keys or time.

Proper randomization in key generation significantly enhances the algorithm's strength.

This experiment demonstrates the importance of using strong encryption standards and the difficulty of

breaking them using brute force methods alone.

APPENDIX

Key Length Tested: 16 bytes (128 bits)

Encryption Mode: hybrid algorithm

Brute Force Attempts: 1000 keys

Results: No valid key was found.

Discussion

The proposed algorithm achieved more significant results than the symmetric algorithms in terms of

execution time, due to the use of dynamic shifting in the proposed algorithm, while the symmetric

algorithm relied on fixed, repeated, and complex steps.

CONCLUSION

After comparing the standard symmetric and asymmetric encryption methods (control group) with the

hybrid encryption model (experimental group), the proposed model demonstrated notable differences.

Specifically, the experimental group exhibited improved security performance and achieved optimal

encryption and decryption times, making it particularly effective. This approach significantly enhances

both performance and security.

17 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

 And security without significant computational costs by using dynamic data shifting and a dynamic

standard AES random key framework.

.

REFERENCES

1. Hussain, A., Mohamed, A., & Razali, S. (2020). A review on cybersecurity: Challenges &

emerging threats. Paper presented at the Proceedings of the 3rd International Conference on

networking, information systems & security.

2. Adeniyi, E. A., Falola, P. B., Maashi, M. S., Aljebreen, M., & Bharany, S. (2022). Secure

sensitive data sharing using RSA and ElGamal cryptographic algorithms with hash functions.

Information, 13(10), 442.

3. Ahmed, S., & Ahmed, T. (2022). Comparative analysis of cryptographic algorithms in the

context of communication: A systematic review. International Journal of Scientific and

Research Publications, 12(7), 161-173.

4. Hossain, M. A., Hossain, M. B., Uddin, M. S., & Imtiaz, S. M. (2016). Performance analysis

of different cryptography algorithms. International Journal of Advanced Research in Computer

Science and Software Engineering, 6(3).

5. Kubba, Z. M. J., & Hoomod, H. K. (2020). Developing a lightweight cryptographic algorithm

based on DNA computing. Paper presented at the AIP Conference Proceedings.

6. Maqsood, F., Ahmed, M., Ali, M. M., & Shah, M. A. (2017). Cryptography: a comparative

analysis for modern techniques. International Journal of Advanced Computer Science and

Applications, 8(6).

7. Marqas, R. B., Almufti, S. M., & Ihsan, R. R. (2020). Comparing Symmetric and Asymmetric

cryptography in message encryption and decryption by using AES and RSA algorithms. Xi’an

Jianzhu Keji Daxue Xuebao/Journal of Xi’an University of Architecture & Technology, 12(3),

3110-3116.

8. Mohammad, H. M., & Abdullah, A. A. (2022). Enhancement process of AES: a lightweight

cryptography algorithm-AES for constrained devices. TELKOMNIKA (Telecommunication

Computing Electronics and Control), 20(3), 551-560.

9. Mudge, K.(2018).What are the downsides of 128-bit encryption? Retrieved from

https://www.quora.com/What-are-the-disadvantages-of-128-bit-encryption

10. Ogundoyin, I., Ogunbiyi, D., Adebanji, S., & Okeyode, Y. (2022). Comparative Analysis and

Performance Evaluation of Cryptographic Algorithms. UNIOSUN Journal of Engineering and

Environmental Sciences, 4(1).

11. Patil, P., & Bansode, R. (2020). Performance evaluation of hybrid cryptography algorithm for

secure sharing of text & images. International Research Journal of Engineering and

Technology, 7(9), 3773-3778.

12. Verma, R., & Dhiman, J. (2022). Implementation of Improved Cryptography Algorithm.

International Journal of Information Technology and Computer Science, 14(2), 45-53.

https://www.quora.com/What-are-the-disadvantages-of-128-bit-encryption

18 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

AUTHORS BIOGRAPHY

Ahmed Saleh Khaled https://orcid.org/0009-0003-2295-6310, was born in May

1981 in Lahj Republic of Yemen completed secondary education in Taiz 2000 and

earned his bachelor’s degree in computer science from the University Science of

Technology- in 2004- Taiz and completed Master from Arab Academy 2023. He

is currently pursuing a Ph.D in Information Technology at the University of

Science & Technology, Aden. He is contacted at: aalhurdi@gmail.com,

Associate Professor. Dr. Nabil Mohammed Ali Munassar was born in Saudi

Arabia in September 1978. He received his B.S. degree in Computer Science from

the University of Science & Technology, Hodeida branch, Yemen in 2001; his

M.S. degree in Computer Information Systems from The Arabic Academy for

Banking and Financial Sciences, Sana'a branch, Yemen, in 2007, and his Ph.D.

degree in Computer Sciences from Jawaharlal Nehru Technology University,

Hyderabad, India 2014-2015. From 2001 until now, he has been a lecturer at the

Faculty of Computers & IT, University of Science & Technology, Yemen. He is

the author of more than 20 articles and has many funded research Projects. His

research interests include Information Technology, Software Engineering,

Databases, System Analysis, and Artificial Intelligence.

(nabil_monaser@hotmail.com, n.munassar@ust.edu).

Professor. Mohammed Fadhl Abdullah is currently a professor of computer

engineering in the Faculty of Engineering at Aden University in Yemen. He

received his master's and PhD degrees in computer engineering from the Indian

Institute of Technology, Delhi, India, in 1993, and 1998. He was the editor-in-

chief of Aden University Journal of Information Technology (AUJIT). He is a

founding member of the International Center for Scientific Research and Studies

(ICSRS). His main research interests are in the fields of machine learning, parallel

algorithms, and cybersecurity. He can be contacted at email: m.albadwi@ust.edu

Name: Adel Mohammed Ali Al-Qashbari

Academic Degree: PhD in Pure Mathematics

Academic Title: Associate Professor

Tasks:

1) Vice Dean for Graduate Studies and Scientific Research - University of Aden

2) Head of the Mathematics Department, Faculty of Education, Aden - University

of Aden

3) Academic Supervisor of the Preparatory Year Program at the Faculty of

Engineering - University of Aden

4) Editor-in-Chief of the Journal of Faculties of Education, University of Aden

5) Reviewer of the Researcher Journal of the Scientific Research Association -

University of Aden

6) General Coordinator of the Department of Basic Sciences at the University of

Science and Technology - Aden

7) Faculty Member at the Faculty of Engineering and Computers at the University

of Science and Technology

https://orcid.org/0009-0003-2295-6310
mailto:aalhurdi@gmail.com,
mailto:nabil_monaser@hotmail.com
mailto:n.munassar@ust.edu
mailto:m.albadwi@ust.edu

19 | Technological Applied Humanitarian Academic Journal TAHAJ, 2025,1 ; 1

8) Editorial Board Member of the Book Journal at the University of Book in Iraq

Date of Appointment at the University: 4/21/2002 by Resolution No. (124)

General Specialization: Pure Mathematics

Specialization: Differential Geometry PhD + Special Functions Master's

Current Position: Associate Professor Doctor at the Faculty of Education / Aden -

Department of Mathematics / University of Aden

Place and Date of Birth: Aden Governorate 1971/4/24 AD

Address: Aden Governorate / Khormaksar District / Al-Saada District / Next to

Aden International Airport

Mobile phone: 733678130 – 700135938 – 776830823 – Home phone: 02-235628

E-mail: Adel_ma71@yahoo.com

