https://riyadahpublishers.com/index.php/MSAJM



### **Research Article**



### Assessment of the Community Awareness on Transmission and Control Practices towards Gastrointestinal Parasites in Vegetables in Aden Governorate, Yemen

Mohammed Ali Al-Baghdadi<sup>1</sup>, Ali N. M. Gubran<sup>2</sup>, Naif Mohammed Al-Haidary<sup>3</sup>

<sup>1</sup> Department of Medical Laboratory, Faculty of Medicine and Health Sciences, Aden University, Aden, Yemen <sup>2</sup> Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen.

<sup>3</sup> Department of Medical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen

\*Corresponding author: Dr. Ali N. M. Gubran

E-mail: a.Alyafei@aden.ust.edu, Abuyafa201@yahoo.com

Received: August 22, 2024 Accepted: September 05, 2024 Published: September 25, 2024

**Copyright**: © 2024 Al-Baghdadi M, et al. This is an open-access article distributed under the terms of the creative common attribution license, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited

**Cite this article as:** Al-Baghdadi MA, Gubran ANM., Al-Haidary NM. Assessment of the Community Awareness on Transmission and Control Practices towards Gastrointestinal Parasites in Vegetables in Aden Governorate, Yemen. Medical Science and Academic Journal (MSAJ). 2024;1(1):66-80. **Abstract:** 

In Aden Governorate, Yemen, the prevalence of gastrointestinal parasite infections is alarmingly high due to insufficient community awareness and preventive actions. Our research adopted a descriptive and analytical crosssectional design, utilizing structured questionnaires to evaluate the understanding of 400 local market vendors and consumers regarding the etiology, symptoms, transmission, and prevention of gastrointestinal parasites. The findings indicated a moderate level of awareness, with 73% of respondents aware of intestinal parasitosis. However, knowledge concerning transmission methods (67.8%) and preventive measures was notably lower, pointing to significant educational gaps. Despite some level of awareness, the detailed knowledge necessary for effective prevention and control was generally lacking. This highlights the urgent necessity for targeted public health initiatives in Yemen aimed at increasing awareness and implementing comprehensive strategies to mitigate the spread of gastrointestinal parasites. This study underscores the critical need for enhancing community knowledge and preventive practices against these infections.

Keywords: awareness, community, gastrointestinal parasites, vegetables, Yemen

#### INTRODUCTION

Intestinal parasites pose a significant global public health challenge, particularly in tropical and subtropical regions. Worldwide, an estimated 3.5 billion individuals are affected, with approximately 450 million people contracting foodborne parasites annually, resulting in around 200,000 deaths each year [1, 2]. Yemen, characterized by underdevelopment, poverty, disease, and social unrest, is particularly vulnerable. With much of its population residing in rural areas, the risk of intestinal parasite infections is heightened [3].



https://riyadahpublishers.com/index.php/MSAJM

Vegetables are an essential component of the human diet; however, if not cleaned thoroughly, they can serve as vectors for transmitting intestinal parasites [4].

Understanding the risk factors associated with intestinal parasite transmission requires assessing the community's knowledge, attitude, and practices regarding the consumption of contaminated raw vegetables. In this case, strong awareness of the communities related to transmission and control of gastrointestinal parasites is highly needed [5].

In Yemen, it has been reported that all examined vegetables were contaminated with intestinal parasites [6]. A lower contamination rate was observed in Aden [7]. However, to the best of our knowledge, no published data exist for Aden Governorate regarding the assessment of community awareness concerning the etiology, clinical signs, transmission, and control practices related to gastrointestinal parasite contamination in vegetables. Therefore, this study was designed to address this knowledge gap.

#### MATERIALS AND METHODS

#### Description of the Study Area

The study was conducted in Aden governorate. Aden is the economic and commercial capital of the Republic of Yemen. Located at coordinates 12°47'N, 45°1'E, Aden is a port city situated in the southern part of the Arabian Peninsula, positioned near the eastern approach to the Red Sea. It is approximately 170 km (110 mi) east of the Bab-el-Mandeb strait and north of the Gulf of Aden. As of 2022, Aden City has a population of approximately 1,152,643 residents. The city spans an area of 760 km2 (290 square miles) [8].

The Aden governorate is divided into the following eight directorates: Al Buraiqeh, Dar Sad, Ash Shaikh Outhman, Al Mansura, Khormaksar, Al Mualla, Crater, and Attawahi.

#### Study Design

A descriptive and analytical cross-sectional study design was adopted for this research. The study period spanned four months, from July 1st to the end of October 2023

#### Sample Size Determination

For the assessment of community awareness and knowledge about intestinal parasites, the sample size of respondents to be interviewed was determined using Slovin's formula equation with a 95% Confidence Interval (95% CI).

$$n=N/(1 + Ne^{2}) [9].$$

$$n = \frac{N}{(1 + Ne^{2})} = \frac{1152643}{(1 + 1152643 \times 0.05^{2})} = 399.99 \cong 400$$

Where:

n = The estimated sample size.

N = The size of the Aden population (1,152,643) based on the 2022 census.

 $e^2$  = The acceptable error, which was 5% (0.05)<sup>2</sup>.

Therefore, the estimated sample size is 399.85, which was approximated to 400 respondents.



https://riyadahpublishers.com/index.php/MSAJM

#### Sampling Procedures and Data Collection

For the assessment of community awareness and knowledge about intestinal parasites in Aden, a structured questionnaire was administered to 400 respondents, including both vendors and consumers of vegetables.

The vendors and consumers were selected randomly using stratified random sampling from the most common local and public markets in the 8 districts of the Aden governorate. The sample size for each district was determined using the following equation:

Stratified random sampling = (Number of category) / Total = sample size of each district

The distribution of the 400 respondents to be interviewed across the 8 districts of the Aden governorate was as follows: Ash-Shaikh Outhman district (72), Al-Buraiqeh district (51), Crater district (52), Al-Mualla district (32), Attawahi district (36), Khur-Maksar district (30), Al-Mansura district (69), and Dar Sad district (58).

The collected data included demographic characteristics of the respondents and their awareness of the etiology, clinical signs, transmission, and control practices related to intestinal parasites.

#### Data Analysis

The data were inputted, coded, validated, and stored within the Microsoft Excel Window 2019 spreadsheet. Analysis was conducted using the Statistical Package for Social Sciences (SPSS) version 20. Chi-square testing was employed to ascertain any statistically significant variances between respondents' awareness and their demographic characteristics, with a significance level set at  $p \le 0.05$ . Descriptive data analysis, including means, frequencies, and proportions, was also undertaken. *Ethical Consideration* 

Ethical approval for the study was granted by the Ethics Review Committee at the University of Aden, Faculty of Medicine & Health Sciences, Graduate Studies & Scientific Research. Verbal consent was obtained from all participants after explaining the purpose of the study **RESULTS** 

#### Demographic Characteristics of the Study Respondents

The 400 vendors and consumers were selected randomly from the most common local and public markets in the 8 directorates of Aden Governorate, Yemen. A total of 26 questions were included in the questionnaire: ten questions to assess the knowledge of the vendors and consumers regarding intestinal parasites and their relation to the consumption of contaminated raw and fresh vegetables, and six and ten questions to assess both the attitude and practices, respectively.

The sociodemographic data obtained by interviewing the vendors and consumers in all eight directorates of Aden Governorate, Yemen, to assess the community's awareness of intestinal parasites and their relation to the consumption of contaminated fresh and raw vegetables, is presented in Table 1.



https://riyadahpublishers.com/index.php/MSAJM

Table 1: The Sociodemographic Characteristics of the Study Respondents

| Category                           | No.                 | %            | Category                 | No. | %    |  |  |
|------------------------------------|---------------------|--------------|--------------------------|-----|------|--|--|
| Age of Responden                   | t                   |              |                          |     | •    |  |  |
| Mean±SD 34.1±13<br>Min-max 15-78ve | 3.8 years<br>ars    |              |                          |     |      |  |  |
| Sex                                |                     | Directorates |                          |     |      |  |  |
| Male                               | 295                 | 73.8         | Crater                   | 52  | 13   |  |  |
| Female                             | 105                 | 26.3         | Khur-<br>Maksar          | 30  | 7.5  |  |  |
| Marital Status                     |                     |              | Al-Mualla                | 32  | 8.0  |  |  |
| Single                             | 147                 | 36.8         | Attawahi                 | 36  | 9.0  |  |  |
| Married                            | 239                 | 59.8         | Ash-Shaikh<br>Outhman    | 72  | 18.0 |  |  |
| Widowed                            | 9                   | 2.3          | Dar Sad                  | 58  | 14.5 |  |  |
| Divorced                           | 5                   | 1.3          | Al-Buraiqeh              | 51  | 12.8 |  |  |
| Education Level                    | I                   | -<br>-       | Al-Mansura 69            |     | 17.2 |  |  |
| Illiteracy                         | 34                  | 8.5          | Number of family members |     |      |  |  |
| Primary School                     | 96(%)               | 24.0         | One                      | 5   | 1.3  |  |  |
| Secondary<br>School                | 124                 | 31.0         | Two                      | 24  | 6.0  |  |  |
| High Grade<br>School               | 146                 | 36.5         | Three                    | 45  | 11.3 |  |  |
| Family Income/me                   | Family Income/month |              | More than 326<br>three   |     | 81.5 |  |  |
| < 60\$                             | 155                 | 38.8%        | Type of Respondent       |     |      |  |  |
| > 60\$                             | 245                 | 61.2%        | Vendor                   | 118 | 29.5 |  |  |
|                                    |                     |              | Consumer                 | 282 | 70.5 |  |  |

The mean age was 34.1 years  $\pm 13.8$  standard deviation. This large standard deviation was attributed to the minimum and maximum age of respondents, which were 15 years and 78 years, respectively. The total frequency and percentage of vendors and consumers were 118 (29.5%) and 282 (70.5%), respectively.



https://rivadahpublishers.com/index.php/MSAJM

| Grouped Age | No  | %     |
|-------------|-----|-------|
| 15-22       | 94  | 23.5  |
| 23-30       | 115 | 28.7  |
| 31-38       | 53  | 13.2  |
| 39-46       | 54  | 13.5  |
| 47-54       | 44  | 11.0  |
| 55-62       | 23  | 5.8   |
| ≥ 63        | 17  | 4.3   |
| Total       | 400 | 100.0 |

#### Assessment of Knowledge about Intestinal Parasites among Respondents

Regarding the knowledge of vendors and customers, 292 (73%) were aware of intestinal parasites. The sources of this knowledge varied, with most having obtained their information from health facilities 127(31.8%), schools (76, 19%), friends 39 (9.8%), and social media 31 (7.8%), respectively. Out of the respondents, 247 (61.8%) could mention some intestinal parasites, while 153 (38.2%) did not know any type of intestinal parasites. Among the 247 respondents, 95 (23.8%) mentioned only one intestinal parasite, while 92 (23%) mentioned two types, and 60 (15%) mentioned three or more types. A total of 271 respondents (67.8%) had knowledge about the modes of transmission, whereas 129 (32.2%) were unaware of how transmission occurs. Those who mentioned only one method of transmission (such as eating contaminated food, consuming raw contaminated food, playing with soil, using a dirty water supply, or contact with flies) contrasted with others who mentioned three methods (flies, contaminated food and raw vegetables; playing in river water, dirty water supply, eating contaminated food) and those who mentioned more than three methods (playing with soil, playing in infested river water, dirty water supply, by flies, and eating contaminated food and raw vegetables). Among the respondents, 271 (67.8%) knew about the methods of transmission, while 129 (32.2%) did not. Of 400 respondents, 200 (50%) were able to describe four or more methods of transmission, whereas 42 (10.5%) mentioned three methods, and 29 (7.3%) mentioned only one method, as shown in Table 3. The number of respondents who knew symptoms of intestinal parasites was higher than those who did not; 277 (69.3%) vs. 123 (30.8%), respectively. The most frequently mentioned symptoms were abdominal pain and diarrhea 76 (19%), followed by weakness, abdominal pain, bloody diarrhea 51 (12.8%), and abdominal pain alone 31 (7.8%). Concerning whether intestinal parasites are treatable/preventable, 276 respondents (69%) were aware, while 115 (28.8%) did not know, and nine cases (2.3%) reported that intestinal parasites were neither treatable nor preventable. The frequency and percentages of respondents who noted that intestinal parasites are a serious disease were 200 (50%), while 108 (27%) did not know whether it was a serious disease or not, and 92 (22.1%) believed it was not serious or only sometimes so.



https://riyadahpublishers.com/index.php/MSAJM

#### Table 3: Assessment of Knowledge about Intestinal Parasites among Respondents

| Category                                                 | No.         | %                                  | Category                                                  | No.                             | %        |  |  |  |
|----------------------------------------------------------|-------------|------------------------------------|-----------------------------------------------------------|---------------------------------|----------|--|--|--|
| Knowledge of Intestinal Para                             | sites       |                                    | Symptoms of Intestinal Parasites Mentioned by Respondents |                                 |          |  |  |  |
| No                                                       | 108         | 27.0                               | Not knowledgeable                                         | 123                             | 30.8     |  |  |  |
| Yes                                                      | 292         | 73.0                               | Mention One Symptom                                       | 37                              | 9.3      |  |  |  |
| Sources of knowledge about in                            | ntestinal p | arasites                           | Mention two and three Symptoms                            | 130                             | 32.5     |  |  |  |
| Not knowledgeable about<br>Intestinal Parasitosis at all | 108         | 27.0                               | Mention Four or More<br>Symptoms                          | 110                             | 27.5     |  |  |  |
| From Health Facilities                                   | 127         | Knowledge About Trans<br>Parasites | mission of Iı                                             | ntestinal                       |          |  |  |  |
| From Schools                                             | 76          | 19.0                               | Mention only One<br>Methods of<br>Transmission            | 29                              | 7.3      |  |  |  |
| From Friends                                             | 39          | 9.8                                | Mention Three Methods<br>of Transmission                  | 42                              | 10.5     |  |  |  |
| From Social Media                                        | 31          | 7.8                                | Mention Four or More<br>Methods of<br>Transmission        | 200                             | 50.0     |  |  |  |
| From Family                                              | 16          | 4.0                                | Total Knowledgeable<br>about Methods of<br>Transmission   | 271                             | 67.8     |  |  |  |
| From Schools & Health<br>Facilities                      | 2           | 0.5                                | Not Knowledgeable<br>about Methods of<br>Transmission     | 129                             | 32.2     |  |  |  |
| Other sources                                            | 1           | 0.3                                | Are Intestinal Parasites t                                | Intestinal Parasites treatable? |          |  |  |  |
| Most Frequently Mentioned I                              | ntestinal I | Parasites                          | Not Known                                                 | 115                             | 28.8     |  |  |  |
| Mention One Type of<br>Intestinal Parasites              | 95          | 23.8                               | Yes                                                       | 276                             | 69.0     |  |  |  |
| Mention Two Types of<br>Intestinal Parasites             | 92          | 23.0                               | No                                                        | 9                               | 2.3      |  |  |  |
| Mention Three and More<br>Types of Intestinal Parasites  | 60          | 15.0                               | Did Intestinal Parasites I                                | Preventable                     | disease? |  |  |  |
| Total Respondents able to<br>Mention Types               | 247         | 61.8                               | Not Known                                                 | 115                             | 28.8     |  |  |  |
| Not knowledgeable about                                  | 153         | 38.2                               | Yes                                                       | 276                             | 69.0     |  |  |  |
|                                                          |             |                                    | No                                                        | 9                               | 2.3      |  |  |  |



https://riyadahpublishers.com/index.php/MSAJM

#### Attitudes Toward Intestinal Parasites: Frequency and Percentage of Responses

The frequency and percentage of questionnaire responses regarding the attitudes of respondents towards intestinal parasites is shown in table 4.

 

 Table 4: Frequency and Percentage of Questionnaire Responses Regarding the Attitudes of Respondents Towards Intestinal Parasites

| Orac attact                                                                                       | Not K | Known | J   | Yes  | N   | ю    | Total |       |
|---------------------------------------------------------------------------------------------------|-------|-------|-----|------|-----|------|-------|-------|
| Question                                                                                          | No.   | %     | No. | %    | No. | %    | No.   | %     |
| Do you think intestinal<br>parasites are a serious<br>disease?                                    | 123   | 30.8  | 200 | 50.0 | 77  | 19.3 | 400   | 100.0 |
| Do you think taking<br>medication against<br>intestinal parasitosis is<br>important?              | 108   | 27.0  | 280 | 70.0 | 12  | 3.0  | 400   | 100.0 |
| Do you think going to a<br>health facility is important<br>when you feel abdominal<br>discomfort? | 108   | 27.0  | 267 | 66.8 | 25  | 6.2  | 400   | 100.0 |
| Do you think taking<br>traditional therapy is<br>good for treating<br>intestinal parasites?       | 108   | 27.0  | 175 | 43.8 | 117 | 29.2 | 400   | 100.0 |
| Do you think playing in<br>soil can cause intestinal<br>parasites?                                | 108   | 27.0  | 193 | 48.3 | 99  | 24.8 | 400   | 100.0 |
| Do you think eating raw<br>vegetables can cause<br>intestinal parasites?                          | 108   | 27.0  | 257 | 64.3 | 35  | 8.7  | 400   | 100.0 |

#### **Respondent Practices: Frequency and Percentage of Questionnaire Responses**

The frequency and percentages of responses to the questionnaire regarding the practices of respondents were described in Table 5. Generally, the practices of respondents toward intestinal parasites showed the lowest percentages.

#### Associations Between Respondent Characteristics and Understanding of Transmission Methods

The association between respondent types and their knowledge of the methods of transmission of intestinal parasites was evaluated using the Chi-Square Test (X<sup>2</sup>-Test), as shown in Table 6. There was a highly statistically significant association observed in p < 0.001.



https://riyadahpublishers.com/index.php/MSAJM

| Table 5: | Frequency | and Percentage  | of Oue  | estionnaire Re | sponses Re | egarding  | the Practices  | s of Resi  | ondents   |
|----------|-----------|-----------------|---------|----------------|------------|-----------|----------------|------------|-----------|
| Lable C. | riequency | und i creentage | voi Que | bulonnune ne   |            | egui unig | ine i fuetice. | , 01 1(05) | Jonacinto |

| Question                                                                  | Sometimes |      | Yes |      | N   | lo   | Total |       |  |
|---------------------------------------------------------------------------|-----------|------|-----|------|-----|------|-------|-------|--|
| Question                                                                  | No.       | %    | No. | %    | No. | %    | No.   | %     |  |
| Did you eat raw meat?                                                     | 109       | 27.2 | 8   | 2.0  | 283 | 70.8 | 400   | 100.0 |  |
| Did you eat raw<br>vegetables?                                            | 109       | 27.2 | 277 | 69.3 | 14  | 3.5  | 400   | 100.0 |  |
| Did you wash the vegetables before eating?                                | 109       | 27.2 | 288 | 72.0 | 3   | 0.8  | 400   | 100.0 |  |
| Did you wash your hands<br>before meals?                                  | 109       | 27.2 | 274 | 68.5 | 17  | 4.3  | 400   | 100.0 |  |
| Did you go to a health<br>facility when you felt<br>abdominal discomfort? | 109       | 27.2 | 264 | 66.0 | 27  | 6.8  | 400   | 100.0 |  |
| Did you take medication for intestinal parasitosis?                       | 109       | 27.2 | 247 | 61.8 | 44  | 11.0 | 400   | 100.0 |  |
| Did you cut your nails<br>periodically?                                   | 109       | 27.2 | 238 | 59.5 | 53  | 13.3 | 400   | 100.0 |  |
| Do you cut your nails with<br>your teeth?                                 | 109       | 27.2 | 74  | 18.5 | 217 | 54.3 | 400   | 100.0 |  |
| Did you use filtered water<br>to drink?                                   | 109       | 27.2 | 221 | 55.3 | 70  | 17.5 | 400   | 100.0 |  |
| Did you wear shoes when walking on soil?                                  | 109       | 27.2 | 244 | 61.0 | 47  | 11.8 | 400   | 100.0 |  |

Table 6: The Association of Respondents to the Methods of Transmission and the Seriousness of Intestinal Parasites

| Type of<br>Respondent   | Transmission methods |      |       |      |       | Seriousness parasites |                      |     |              |             |      |       |
|-------------------------|----------------------|------|-------|------|-------|-----------------------|----------------------|-----|--------------|-------------|------|-------|
|                         | Not K                | nown | Known |      | Р     | Not<br>Awai           | Not<br>Aware Serious |     | us           | Not Serious |      | P     |
|                         | No.                  | %    | No.   | %    |       | No.                   | %                    | No. | %            | No.         | %    |       |
| Vendors<br>(n=118)      | 53                   | 44.9 | 65    | 55.1 | 0.001 | 50                    | 42.4                 | 46  | 39.0         | 22          | 18.6 |       |
| Consumers<br>(n=282)    | 76                   | 27.0 | 206   | 73.0 |       | 73                    | 25.9                 | 154 | 54.6         | 55          | 19.5 | 0.003 |
| <b>Total</b><br>(n=400) | 129                  | 32.2 | 271   | 67.8 |       | 123                   | 30.8                 | 200 | <b>50</b> .0 | 77          | 19.2 |       |



https://riyadahpublishers.com/index.php/MSAJM

#### Assessment of Attitudes Toward the Severity of Intestinal Parasites

The respondents' attitudes toward the severity of intestinal parasites were assessed using a Chi-Square Test (X<sup>2</sup>-Test), as depicted in Table 6, revealing a statistically significant association (p = 0.003).

#### Correlation of Sociodemographic Factors with Knowledge on Transmission Methods

The assessment of knowledge regarding the methods of transmission, in relation to the sociodemographic data of vendors and consumers, was evaluated using the Chi-Square Test ( $X^2$ -Test). The results are presented in Table 7. All methods of transmission and the sociodemographic data showed statistically significant associations, except for marital status and family income.

 Table 7: Knowledge of the Methods of Transmission in Relation to Sociodemographic Data of Respondents (n=400)

|                                    | Know the Methods of Transmission |            |        |      |       |  |  |  |  |
|------------------------------------|----------------------------------|------------|--------|------|-------|--|--|--|--|
| Variable                           | Know                             |            | Not kn | low  |       |  |  |  |  |
|                                    | No.                              | %          | No.    | %    |       |  |  |  |  |
| Age Grouped                        | (Years)                          |            |        |      |       |  |  |  |  |
| 15-29                              | 118                              | 43.5       | 73     | 56.6 |       |  |  |  |  |
| 30-44                              | 79                               | 29.2       | 32     | 24.8 | 0.04  |  |  |  |  |
| 45-59                              | 58                               | 21.4       | 15     | 11.6 | 0.04  |  |  |  |  |
| ≥60                                | 16                               | 5.9        | 9      | 7.0  |       |  |  |  |  |
| Sex                                |                                  |            |        |      |       |  |  |  |  |
| Male                               | 182                              | 182 67.2 1 |        | 87.6 | 0.001 |  |  |  |  |
| Female                             | 89                               | 32.8       | 16     | 12.4 | 0.001 |  |  |  |  |
| Education Lev                      | vel                              |            |        |      |       |  |  |  |  |
| Illiteracy                         | 8                                | 3.0        | 26     | 20.2 |       |  |  |  |  |
| Primary<br>School                  | 43                               | 15.9       | 52     | 40.3 |       |  |  |  |  |
| Secondary<br>School                | 92                               | 33.9       | 32     | 24.8 | 0.001 |  |  |  |  |
| High<br>School/Higher<br>Education | 128                              | 47.2       | 19     | 14.7 |       |  |  |  |  |



https://riyadahpublishers.com/index.php/MSAJM

#### Relationship Between the Number of Intestinal Parasites Mentioned and Sociodemographic Profiles

The relationship between the number of intestinal parasites mentioned and the sociodemographic profiles of the respondents—including age groups, gender, type of respondent, location of directorates, marital status, and education levels—was analyzed using the Chi-Square Test (X<sup>2</sup>-Test), as illustrated in table 8.

Table 8: Relationship Between the Number of Intestinal Parasites Mentioned and Sociodemographic Data

| (n=400)<br>Number of Types of Intestinal Parasites Mentioned by studied group |     |            |     |            |           |           |        |       |     |       |       |  |  |
|-------------------------------------------------------------------------------|-----|------------|-----|------------|-----------|-----------|--------|-------|-----|-------|-------|--|--|
|                                                                               | No  | No any One |     | Туре Тwo Т |           | Sypes     | >three | Types | To  | tal   |       |  |  |
| Variable                                                                      | No. | %          | No. | %          | No.       | %         | No.    | %     | No. | %     | р     |  |  |
| Age Group (Years)                                                             |     |            |     |            |           |           |        |       |     |       |       |  |  |
| 15-29                                                                         | 82  | 53.6       | 48  | 50.5       | 38        | 41.3      | 23     | 38.3  | 191 | 47.8  |       |  |  |
| 30-44                                                                         | 39  | 25.5       | 28  | 29.5       | 27        | 29.3      | 17     | 28.3  | 111 | 27.8  |       |  |  |
| 45-59                                                                         | 20  | 13.1.      | 16  | 16.8       | 23        | 25.0      | 14     | 23.3  | 73  | 18.2  | 0.2   |  |  |
| ≥60                                                                           | 12  | 7.8        | 3   | 3.2        | 4         | 4.3       | 6      | 10.0  | 25  | 6.2   |       |  |  |
| Total                                                                         | 153 | 100.0      | 95  | 100.0      | 92        | 100.0     | 60     | 100.  | 400 | 100.0 |       |  |  |
| Sex                                                                           |     |            |     |            |           |           |        |       |     |       |       |  |  |
| Male                                                                          | 122 | 79.7       | 73  | 76.8       | 66        | 71.7      | 34     | 56.7  | 295 | 73.8  |       |  |  |
| Female                                                                        | 31  | 20.3       | 22  | 23.2       | 26        | 28.3      | 26     | 43.3  | 105 | 26.2  | 0.006 |  |  |
| Total                                                                         | 153 | 100.0      | 95  | 100.0      | 92        | 100.0     | 60     | 100.0 | 400 | 100.0 |       |  |  |
|                                                                               |     | 1          |     |            | Type of 1 | Responde  | nt     |       |     |       |       |  |  |
| Venders                                                                       | 56  | 36.6       | 29  | 30.5       | 21        | 22.8      | 12     | 20.0  | 118 | 29.5  | 0.04  |  |  |
| Consumers                                                                     | 97  | 63.4       | 66  | 69.5       | 71        | 77.2      | 48     | 80.0  | 282 | 70.5  | 0.04  |  |  |
| Total                                                                         | 153 |            | 95  |            | 92        |           | 60     |       |     | 100.0 |       |  |  |
|                                                                               | 1   |            | 1   |            | Educat    | ion Level |        | 1     |     | 1     |       |  |  |
| Illiteracy                                                                    | 27  | 17.6       | 2   | 2.1        | 2         | 2.2       | 3      | 5.0   | 34  | 8.5   |       |  |  |
| Primary<br>School                                                             | 57  | 37.3       | 19  | 20.0       | 14        | 15.2      | 5      | 8.3   | 95  | 23.8  |       |  |  |
| Secondary<br>School                                                           | 37  | 24.2       | 38  | 40.0       | 37        | 40.2      | 12     | 20.0  | 124 | 31.0  | 0.001 |  |  |
| High<br>School/<br>Higher<br>Education                                        | 32  | 20.9       | 36  | 37.9       | 39        | 42.4      | 40     | 66.7  | 147 | 36.8  |       |  |  |



https://riyadahpublishers.com/index.php/MSAJM

### DISCUSSION

This study represents the first attempt to evaluate community awareness of the etiology, clinical signs, transmission, and control practices concerning gastrointestinal parasites in the Aden governorate, Yemen. Our findings indicated a substantial level of knowledge about intestinal parasitosis, with 292 out of 400 respondents (73%) demonstrating awareness. This is comparable to a study by Ahmed et al. [10] in Asmara, Eritrea, which also reported a 73% awareness level. Conversely, a study by Yusof and Isa [11] in Malaysia showed slightly lower awareness (67.6%), whereas research conducted in Addis Ababa, Ethiopia, found the highest level of knowledge (96.4%)[12]. In Saudi Arabia, a study identified that a significant proportion (92.7%) of participants lacked awareness about intestinal parasites and how to prevent them [13].

In our cohort, 23.8% could identify one type of intestinal parasite, 23% could identify two types, and 15% could identify three or more types. Furthermore, 247 out of 400 respondents (61.8%) could name specific intestinal parasites, whereas 153 (38.2%) had no knowledge of such parasites, as detailed in Table 3. The transmission of intestinal parasites can occur through contaminated food, including fresh and raw vegetables, with awareness levels influenced by education, geographic location, and cultural practices. Our study's awareness level was lower than that found in a Tanzanian study, where 75.5% of participants were aware of gastrointestinal parasites [5].

Regarding the spread of intestinal parasitosis, 292 respondents (73%) had heard about the condition, aligning with the findings of Ahmed et al. [10] in Asmara. However, a study by Tesfaye Taye [12] reported a higher awareness rate of 96.1%. In the present study, knowledge about the transmission methods of intestinal parasites was identified in 271 respondents (67.8%), significantly higher (P < 0.001) than the knowledge among vendors. This contrasts with a study in Ethiopia by Tesfaye Taye [12], which found that 325 out of 337 participants (96.4%) had a good understanding of transmission methods, while only 12 (3.6%) had poor knowledge.

Awareness of the severity of intestinal parasites was found to be low with consumers more informed than vendors (54.6% vs. 39%, P=0.003). This suggests that individuals with greater knowledge are more likely to appreciate the potential complications associated with these infections, despite a conflicting report by Tesfaye Taye [12], indicating higher awareness (96.4%).

Concerning symptoms, 277 respondents (69.2%) were knowledgeable about symptoms associated with intestinal parasites, such as abdominal pain, diarrhea, weight loss, and fatigue. The relationship between methods of transmission knowledge and sociodemographic data was analyzed using the Chi-Square test, revealing that knowledge decreases with age, with a significant difference (P = 0.04). The highest awareness was among individuals aged 15-29 years (43.5%), with the lowest in those aged 60 years and above (5.9%). This discrepancy may be attributed to younger individuals' easier access to information through schools and the internet, and their involvement in social networks that actively disseminate health-related information. Additionally, high school-educated respondents showed a higher understanding of transmission methods (47.2%, P < 0.001).

Male participants exhibited greater knowledge about transmission methods than females (67.2% vs. 32.8%, P < 0.001), potentially reflecting traditional gender roles in health information dissemination within households and communities.



https://riyadahpublishers.com/index.php/MSAJM

Regarding attitudes towards intestinal parasites, half of the respondents (50%) viewed them as a serious disease, and 48.3% believed that playing in soil could lead to parasitosis. This study showed a higher inclination towards raw vegetable consumption as a perceived cause of intestinal parasites (64.3%) compared to a study in Ethiopia (56.7%) [12]. Regular nail-cutting and seeking healthcare for abdominal discomfort were practices reported by 59.5% and 66% of our respondents, respectively, which are lower than the figures reported in the Ethiopian study (77.7% and 95.5%, respectively). Such attitudes and practices highlight a generally lesser degree of knowledge and a more positive attitude towards managing intestinal parasites compared to the Ethiopian study [12].

The prevalence of inadequate knowledge, attitudes/perceptions, and improper practices in relation to intestinal parasitism contributes significantly to the high prevalence levels, making control or eradication challenging [14]. To reduce mortality and morbidity, especially in children under five, it's crucial to assess the knowledge, attitudes, and practices of parents/guardians towards intestinal parasites. Understanding the prevalence of these parasites and identifying associated factors are essential for planning and implementing successful community-based control interventions [15].

### CONCLUSION

The majority of the participant exhibited a commendable level of knowledge and a positive attitude towards intestinal parasites, underlining the necessity for public health education focused on transmission pathways and prevention strategies for intestinal parasitosis.

A substantial proportion of participants demonstrated good knowledge of intestinal parasitosis. However, this level of awareness was not as high as that observed in Addis Ababa, Ethiopia. Similarly, the overall awareness among our study's respondents about gastrointestinal parasites was moderately high, yet this too falls short of the awareness levels reported in Addis Ababa.

Our findings indicate a significant gap in knowledge regarding the methods of transmission of intestinal parasites, with vendors exhibiting considerably less understanding than consumers. This difference was statistically significant. Furthermore, knowledge and awareness concerning the seriousness of intestinal parasites remained low, with consumers again showing more understanding than vendors.

An interesting demographic trend emerged regarding knowledge levels and age; knowledge decreased significantly with age, with the highest awareness found among those aged 15-29 years and the lowest in individuals aged 60 years and above. Despite the presence of higher knowledge levels among high school graduates, these figures still represented the lower end of awareness percentages.

Regarding perceptions of intestinal parasitosis, half of the respondents considered intestinal parasites a serious disease, and less than half of them believed that soil contact could lead to parasitosis. Nevertheless, these percentages are still on the lower side, indicating a gap in perception and awareness. The study also revealed that the majority of participants lacked comprehensive knowledge yet held a positive attitude towards managing intestinal parasites. Practices such as washing vegetables and hands—critical to preventing faeco-oral transmission of infections—were reported at the lowest percentages.

In conclusion, while there is a foundation of good knowledge and positive attitudes towards intestinal parasitosis among the study cohorts, there remains a substantial need for targeted public health education. This education should emphasize the transmission and prevention of intestinal parasites, especially given the gaps in awareness and practices crucial for minimizing the risk of infection.



https://rivadahpublishers.com/index.php/MSAJM

#### Disclaimer

The article has not been previously presented or published, and is not part of a thesis project.

#### **Conflict of Interest**

There are no financial, personal, or professional conflicts of interest to declare.

#### Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript

### REFERENCES

- 1 World Health Organization (WHO). (2015). *Estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007–2015*. World Health Organization.
- 2 Adejayan, A., & Morenikeji, O. (2015). Prevalence of intestinal parasites in vegetables sold in major markets in Ibadan City, South-West Nigeria. *Ghana Journal of Science, Physical and Applied Sciences*, 21(1), 7-12.
- 3 Alharazi, T. (2022). Intestinal Parasitic Infection Among Rural Schoolchildren in Taiz, Yemen: School-based Assessment of The Prevalence and Associated Risk Factors. *Helminthologia*, 59(3), 233-245
- 4 García, H. H., Gonzalez, A. E., Evans, C. A. W., & Gilman, R. H. (2020). Taenia solium cysticercosis. *The Lancet*, 395(10221), 1342–1354
- Kakomo, S. S., Nzalawahe, J. S., & Mafie, E. M. (2022). Assessment of the Community Awareness on Transmission and Control Practices towards Gastrointestinal Parasites in Fruits and Vegetables in Zanzibar. *American Journal of Public Health Research*, 10(3), 90-97
- 6 Al-Sanabani, A. W., Abd Algalil, F. M., Radman, B. A., & Al-Manusori, R. T. (2016). Prevalence of intestinal parasites in fresh leafy vegetables in some farms at Dhamar city, Yemen. *International Journal of Medicine Research*, 1(5), 7-13
- 7 Muqbel, A. M. Q., & Binsaad, A. J. A. (2023). Parasitic contamination of vegetables in selected local markets in Aden governorate, Yemen. Electronic Journal of University of Aden for Basic and Applied Sciences, 4(2), 187–198
- 8 Al-Salehi E. (2021). The Other Side of Aden. Sana'a Center for Stratigic Studies. Sana'a, Yemen.
- 9 Tejada, J. J., & Punzalan, J. R. B. (2012). On the misuse of Slovin's formula. *The Philippine Statistician*, 61(1), 129-136
- 10 Ahmed, K. S., Siraj, N. M., Fitsumberhan, H., Isaac, S., Yohannes, S., Eman, D., Berhane, Y., & Araya, M. (2017). Knowledge, attitude and practice (KAP) assessment of intestinal parasitic infection among school children in Asmara, Eritrea. *Health*, 9, 57-68
- 11 Yusof, A. M., & Isa, M. L. M. (2017). Knowledge, attitude and practices of intestinal helminths and protozoa infection among parents of school children in peripheral school and urban school area in Kuantan, Pahang, Malaysia. *Journal of Biotechnology and Strategic Health Research*, 1(3), 75-82



https://riyadahpublishers.com/index.php/MSAJM

- 12 Taye, T. (2021). Prevalence of intestinal parasites, associated factors and parental knowledge, attitude and practices among under five years old children with diarrhea at Federal Police Hospital, Addis Ababa, Ethiopia [Master's thesis, Addis Ababa University]. AAU-ETD Repository. https://etd.aau.edu.et/items/a4ec103f-da00-4bc1-a373-5462b0cfb265
- 13 Sara, A. I., Al-Jadidi, S., Al-Sulaiman, N., Al-Qahtani, J., & Ashour, D. (2018). Potential risk factors of intestinal parasitic infection in Al Ahssa, Saudi Arabia. *American Journal of Public Health Research*, 3521-3525.
- 14 Firdu, T., Abunna, F., & Girma, M. (2014). Intestinal protozoal parasites in diarrheal children and associated risk factors at Yirgalem Hospital, Ethiopia: a case-control study. *International Scholarly Research Notices*, 2014
- 15 World Health Organization. (2001). *WHO recommended strategies for the prevention and control of communicable diseases*. No. WHO/CDS/CPE/SMT/2001.13.